CO₂ Control in IGCC Systems: H₂ Production from Coal with Integrated CO₂ Separation P. van Beurden, M.C. Carbo, S.C.A. Kluiters, H.Th.J. Reijers, W.G. Haije, R.W. van den Brink, D. Jansen ### Introduction CO_2 -free production of electricity from fossil fuels can be done via a H_2/CO_2 -separating reactors. At ECN we develop such reactors based on CO_2 - and H_2 -membranes or CO_2 -sorbents for the water-gas shift (WGS) reaction: $$CO + H_2O \rightarrow H_2 + CO_2$$ Parallel to this reaction, in a membrane reactor the produced CO₂ or H₂ permeates through the membrane, and in a sorption-enhanced reactor the produced CO₂ is adsorbed onto an adsorbent. These technologies can be used for CO_2 -capture in a Coal IGCC system. In such a system coal is converted to syngas ($CO+H_2$) by a gasifier and then shifted to H_2 and CO_2 in a H_2/CO_2 -separating reactor, resulting in a H_2 -rich stream for electricity production and a CO_2 -rich stream for sequestration. # Thermodynamics: WGS with CO₂ or H₂ Separation Removing H₂ or CO₂ shifts the WGS reaction equilibrium to the product side, resulting in enhanced CO conversion. Left: Both temperature and the amount of separated CO_2 or H_2 strongly influence the CO conversion. Right: To increase CO conversion from ~80% to 95%, CO_2 partial pressure (slip) must be reduced from 14 bar to 2 bar in a WGS reactor with CO_2 membrane or sorbent. ## IGCC Systems with CO₂ Capture Two possible IGCC system configurations with CO_2 capture; one with a CO_2 or H_2 separating membrane, one with a CO_2 sorbent. Sulfur can be removed before the shift section (*clean shift*) or after (*sour shift*). ### Experiments: WGS with CO₂ Sorbents On lab-scale, WGS in the presence of a CO₂-sorbent, resulted in 100% conversion of CO. After ~5 min., the sorbent is saturated and CO, CO₂ concentrations in the gas stream rise from 0% to equilibrium. The CO₂-adsorbent is regenerated after 20 min. by purging with steam. 400 °C, 1 bar, 14.5%H₂O, 2.5%CO₂, 12%H₂, 6%CO; Fe/Cr-catalyst; ex-hydrotalcite adsorbent. This research is part of the EOS-LT CAPTECH programme, financially supported by the Dutch Ministry of Economic Affairs and managed by SenterNovem, and the GCEP programme, the Stanford University Global Climate and Energy Project (http://gcep.stanford.edu/).